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Figure 1: Proposed virtual environment working flow pipeline (a)Input virtual animation.(b) Simulated multi-model sensors
placed on the body and environment.(c) Produced virtual dataset. (d) Classifier trained by virtual dataset. (e) Real activity
recognized

ABSTRACT
Following the conventional pipeline, the training dataset of a human
activity recognition system relies on the detection of the significant
signal variation regions. Such position-specific classifiers provide
less flexibility for users to alter the sensor positions. In this paper,
we proposed to employ the simulated sensor to generate the cor-
responding signal from human motion animation as the dataset.
Visualizing the corresponding items from the real world, the user
can determine the sensor’s placement arbitrarily and obtain accu-
racy feedback as well as the classifier interface to get relief from the
cost of a conventional training model. With the cases validation, the
classifier trained by simulated sensor data can effectively recognize
the real-world activity.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; Ubiquitous and mobile computing systems and tools.
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1 INTRODUCTION
Human activity recognition (HAR) systems have been successfully
applied to multiple aspects in human daily life [7, 19, 20]. In general,
the classical fashion of the HAR system design started from the
collection of multi-modal sensory data on the basis of demand. One
of the most significant factors determining the performance of a
HAR system is the training process, i.e. the adopted sensor dataset.
Conventionally, according to the characteristics of the required
system, the deployed sensor is installed at the area where the most
significant variation of detected signal is presented. The designer
or developer normally follows the experience to decide where the
sensor is placed, and thus building the system. The inherent posi-
tioning enables the user to avoid selecting the sensor’s placement
casually. Nevertheless, the fixed position can not totally fit the
situation of the user’s conditions [3]. For example, for long-term
monitoring, providing the selectable positions for wearable sensors
can lessen the discomfort caused by wearing. Besides, the instal-
lation of non-wearable sensors may also have plenty of potential
placement locations indoors, like walls, doors, windows, or shelves,
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which can not only affect the system’s performance but also interior
design and convenience.

Even if more potential positions have been explored from the
demand, the re-collection of the dataset in terms of specific position
from the real world and retraining process are still the bottlenecks.
Various studies have concentrated on the position-aware classi-
fier development to improve the adaptability for the target user
[9, 12]. The datasets from different body parts are utilized to pre-
train the respective classifiers, and the position determination is
executed first before the recognition. Whereas, the flexibility of the
designed system depends on the pre-work to a large extent. When
the required activities are altered or more sensors are required to
improve the accuracy, the complicated training process still needs
to be recalled. Therefore, a system that can be flexibly designed
to satisfy the user’s requirement in terms of sensor position and
number without recollecting the sensor data from the real world
will be beneficial to the corresponding HAR applications.

In this work, we developed a virtual platform combined with
sensor simulation to design the non-visual HAR systems. In such
a virtual environment, the human motion animation is identified
as the real activity, and with sensor simulated as shown in the real
world gathers the information. The user could casually indicate their
interested or uninterested location to place the sensor. And with
motion re-conducting, the simulated sensor units are able to sense
the signal and form the dataset. The virtual platform can provide the
accuracy as the feedback of examined positions via cross-validation.
Also the classifier interface trained by simulation signal can be
generated forwarding to the real world and recognize the actual
activity. The working flow pipeline is presented in Figure 1.

2 BACKGROUND
With an advanced deep learning network, a vision-based HAR sys-
tem is provided with an abundant dataset and high accuracy [4, 5].
Furthermore, the other devices based systems have also been paid
close attention. To design a portable system or be combined with
consuming electronics for convenience, such a system is closer to
real life, for example the electrocardiogram signal [1], the foot pres-
sure [10], ambient light [17], Wi-Fi signal [14], distance sensor[18],
etc. Developed systemswould be effectively at the designated sensor
placement. While in a practical sense, the selection of a placement
necessitates both considerations of space design and system perfor-
mance. Therefore, an inherent balance between sensor positioning
and system accuracy emerges.

From the HAR related human-computer interaction community,
close attention has been placed at what feedback can the classified
activities provide and what interaction approaches can be applied,
such as MotionMA [16] and Zsensor [8]. While, few researches
have been conducting on the sensor simulation. Young et. al [22]
developed a simulation environment to simulate the inertial signal
including the acceleration, rotation, and magnetic intensity via the
given IMU trajectory model. Another work of Shingo et. al [13]
designed a simulation tool to realize multi-sensor setting activity
recognition via the motion capture data as well. Kwon et. al [6]
transferred the video object into virtual body motion model and
then calculated the acceleration data to expand the current dataset.
Such systems realize the simulation of acceleration data based on

the motion capture (MoCap) data stream which contains the initial
information of relevant coordinate variation of determined markers.

Hence, we aimed to develop a simulation platform that can pro-
vide a realistic virtual environment to be helpful to HAR design.
Rather than the initial motion capture dataset, our approach directly
processes the humanoid model with motion animation. Referring
to the real world sampling procedure, the proposed system retained
the facticity of signal acquisition and reduced the requirement of
input to allow more possible applications based on virtual anima-
tion.

3 METHODOLOGY
The simulation environment is established based on the Game
Engine Unity3D. Unity3D has advantages to visualize the daily
items and characteristics in the virtual environment which enables
the simulation to be as close as possible to the real world.

3.1 Input Data Stream
Previous work simulated multi-modal simulated sensor data all
based on MoCap dataset containing coordinate value and skeleton
hierarchy data. In our work, we applied the entire segment motion
information to the humanoid model, only use the coordinate in
the virtual world. User can be modelled by a specific humanoid
model with different characteristics as well as mapping the real size
of subject to a virtual model. We adopted the Xsens as our input
device to generate the motion data via the MVN system.

3.2 Sensor Simulation
After user-defined motion data input, then the corresponding sen-
sors need to be simulated. Combined with the characteristics of the
developed environment, the accelerometer and distance sensor are
likely to be simulated to enable both the wearable and non-wearable
HAR system.

For distance data sampling, Raycast function is utilized to simu-
late the infrared signal and detect the distance between the obstacle
and emission source. To produce the acceleration signal, we referred
to the structure of the actual accelerometer, i.e. spring-mass-damper
structure. As shown in Figure 2, the cube simulates the mass of the
accelerometer. Adding the dual-spring to establish the detector of
the acceleration of three-axes. The whole simulated accelerometer
moves following the referenced joint during the activity. There-
fore, when an external force is applied on the sensor, the mass will
generate the acceleration according to Newton’s second law with
analysing the situation of stress of proof mass, the inertial force
can be calculated by Equation 1.

𝑚 ¥𝑥 + 𝑐 ¤𝑥 + 𝑘𝑥 =𝑚𝑎 (1)
Where c is a damper coefficient of the spring and k is a constant

factor of spring. The x represents the displacement of the mass.
Following this way, the relative displacement between the mass and
lower boundary board can be recorded and according to differential
formula the simulated accelerometer can generate the acceleration
signal, which is similar to a person wearing related sensors on the
body.

Different from other simulation fashion, our approach aims to
maintain the fidelity to produce the sensor data via recurrenting
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Figure 2: Built simulated accelerometer

the sampling process. Only the motion animation combined with
coordinate information in a virtual environment is exploited with-
out any prior knowledge of motion position sequence. Therefore,
the humanoid model in activity resembles a real subject being in an
action. However, the executed human motion in Unity is based on
frame-by-frame. The procedure of generating the simulation data
can be recognized as the re-sampled process. However, the opera-
tion of Unity is affected by the frame rate and script’s complexity
seriously, which normally causes the repeated frame. Therefore, we
decreased the sampling slot at first (i.e. down sampled), which is able
to eliminate the influence of frame repetition. The down-sampled
frequency is the half of required sampling frequency. Subsequently,
interpolating the sampled data into required sampling frequency.

3.3 HAR system
Various types of ML models have been successfully utilized in HAR
with respect to identifying different kinds of activity. Due to the data
characteristic and less database for wearable devices, we selected
the Support Vector Machine (SVM) model (with an RBF kernel,
C=1000) as the classifier [11]. Additionally, to improve the ability
to classify data sensed from the real world, data augmentation (DA)
was adopted to expand the dataset from individual. Referencing the
work of [15], the DA for wearable sensor data can be performed in
the original dataset or feature domain. We adopted the approach
described as follows.

• Permutation: Perturb the time location of input data;
• Time warping: Distort temporal locations;
• Magnitude warping: Warp the signal’s magnitude;

However, for non-wearable types, HAR is performed based on the
grayscale figure, which we select to change the humanoid’s size to
enrich the data samples, especially the shoulder and chest width,
to simulate different body types.

• Change the size of the model: Multiplied by a factor of 1.2
and 0.8 to alter the body type

Regarding extracted features, for a wearable case, the signal from
the body is used to calculate the time and frequency domain. We
selected the mean, variance, standard variance, 75th percentile, and
inter-percentile as time-domain features. In addition, the mean, me-
dian value of the power spectrum, and Fourier coefficient are adopted
as frequency features [21]. Calculated features are subsequently
normalized to eliminate the effects of the amplitudes of different
input signals. For the non-wearable case, we converted the signal
from a specific position into a pixel of a grayscale figure. Through
segmentation, each figure contains the signal information of all

Figure 3: The workflow of activity recognition. The simula-
tion data and actual data are both segmented to extract the
features according to different types of system. And finally
obtain the simulation and acutal dataset

sensors in an interval. The texture feature is extracted via the Gabor
filter and input into the classifier. The corresponding work process
of feature generation is given in Figure 3.

4 CASE STUDY
We invited nine participants to take part in the experiments. We
showed disparate scenarios and presented the output from the
platform for establishing a HAR system. The detailed validation
protocol is presented as follows.

• Input: user(s) conducts the defined activity to generate the
motion animation with 90 seconds;

• Data processing: the animation is replayed in the virtual
environment with indicated sensors. And the simulation data
is segmented by a two-second window;

• Feedback (in virtual environment): accuracy calculated
by 5-fold cross-validation of simulation dataset;

• Output: the classifier trained by simulation dataset with
designated sensor positions

• Validation: the sensors are placed at the mapped position
in the real world and user are asked to conduct the activity
with 60s and process data with the same method;

• Result: use the trained classifier to calculate the accuracy
of recognition of real activity;
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Figure 4: Activity type and actual wearing of case-a (a) User with MoCap suit for input generation.(b)Virtual activity

• Environment: ThinkPad, X1 Carbon; i7-8565Uwith Unity3D
(2018.4.14) and Python (3.7);

4.1 Case description
a. Wearable acceleromters system for daily activity recogni-
tion

In this part, we leveraged platform to generate the relevant re-
sult regarding several types of daily activity recognition with an
accelerometer worn on the body. We recruited three participants
(two males and one female; age: 21/26/24) to wear the accelerom-
eters. The user’s choice of the sensor’s position and number as
well as recognized activities are presented as in Table 1. As the
virtual accelerometer adopted in this part, we configure the related
parameters of designed spring-mass system, i.e., the accelerometer.
According to the real sensor design, the damper coefficient is re-
quested to be large smaller than the constant factor to ensure a rapid
response [2]. The sampling rate is 60Hz and thus 30Hz-sampling is
executed in virtual environment. The animation capture as well as
produced virtual motion is presented in Figure 4.

b.Wearable distance sensor system for exercises recognition
In this part, the platform is applied to design a wearable distance
sensor system which the sensor is attached on the lower limbs of
an individual. The sensors attached to each body part have multiple
directions and transmission angles and theHAR system is utilized to
recognize exercises. We invited three people (males; age: 19/26/27)
to test this application. Three types of exercises, the heel up/down,
squat, and hip stretch, are proposed as recognized activities.

To build the prototype of the distance sensor-based HAR, we
adopted the infrared distance sensor (GP2Y0A21YK0F, Sharp),which
has an effective detection range from 10 to 80 cm. Additionally, the
Arduino chip (ARDUINO PRO MINI) is used for data acquisition
and transmission. Each subject must execute activities lasting for 60
seconds with 50Hz sampling rate for the real-world testing. Design
process is shown in Figure 5.

c.Distance sensing system formotion recognition in a bath-
room

Ambient sensors can also be employed to capture the signal
while the body part can be liberated without any device. In this
part, we referred to conventional dense sensing scene to design
a HAR system oriented to the activity recognition in a bathroom.

The user can determine where to place the infrared distance sensor
and how many sensors according to his/her preference in virtual
environment. We invited user G (male; height 175; weight: 69kg)
who lived in to test the experiment and two participants (user H
and I) to test the robustness of the classifier.

We use the virtual platform to give the scene, that in a bathroom,
activities like "washing hands", "washing face" and "brushing teeth"
need to be recognized. The applied area is assumed to be in front
of the washbasin. The user would like to install the sensors on the
mirror above the sink, facing the person. In the virtual environment,
the user tested different types of sensor combination and finally
decided use ten sensors arranged in a straight line. Subsequently,
we examined the performance of classifier trained by simulation
classifier. We utilized the infrared distance sensor (GP2Y0A21YK0F,
Sharp) and the Arduino chip (ARDUINO PRO MINI) for data sam-
pling and validation. Design process is presented in Figure 6.

4.2 Result
The testing result is presented in Table 2. According to the case-a,
for some lower body parts, the accuracy distinction between the
simulation and actual data is relatively large. The reason is that the
lower body part generally causes relatively huge movements during
daily motion, like running. The larger movement will make the
spring-damper system inaccurate to an extent. Following this point,
to classify the activity that the subject interacts with floors higher
than the ground, such as climbing stairs, the huge movement in a
vertical direction enables the worst classification of the simulated
classifier. The distance sensor does not entail the calculation of the
signal that the data is directly returned. To improve the accuracy of
a simulated classifier, it is crucial to ensure the similarity of the two
waveforms from simulated and real situations. Moreover, applying
a distance sensor both to wearable cases and mounted at external
ambient, mapping from the virtual environment to the real world is
necessary. For case-c, we also invited another two subjects (males;
height: 166cm/171cm; weight: 61kg/64kg) to test the performance
of the designed system. We used the body type data to alter the
relevant humanoid model in simulation and generate the simulation
data. With the adopted sensor location the simulation accuracy is
decreased to 78.21%. Because of differences in body size of subjects,
the signal from limited channels cannot train the model with good
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Table 1: Users demand of case-a

Subject Sensor position demand Recognized activity
A Number less than 2 and dislikes wearing it on the waist standing/walking/running/squatting
B Number less than 3 and prefer to wear on the chest at first walking/running/lying/sitting
C No restriction standing/walking/running/going upstairs/downstairs

Figure 5: The application scene of case-b. (a) Designed HAR system in virtual environment. (b) Sensor concept. (c) Built real
sensor. (d) Real-world testing

Figure 6: The application scene of case-c. (a) Designed HAR system in virtual environment. (b) Actual applied scene. (c) Built
sensor component. (d) Real-world testing

robustness. Increasing the number and expanding the sensor area
can address the issue, but more space will be utilized.

5 CONCLUSION AND FUTUREWORK
In this paper, we designed a virtual simulation environment to
produce the simulated multi-modal sensor data. The sensor position
is identified as an interface between the user and designed HAR
system. We proposed to drop back the position choice to the end-
user side. With fidelity of virtual environment, the humanoid model
as well as applied scene can both be customized to fit the actual
situation. Moreover, our method offer more choices and enable the
user more arbitrarily to place the sensor in the virtual scenario. As
the virtual dataset generated, the accuracy is provided as feedback to

help the user to determine whether the current position is satisfied
and adjust the subsequent sensor placement and numbers.

However, in this work we only conducted the small amount case
studies rather than large number of user study, because our focus is
related to each individual’s preference. For different subjects, their
choices of sensor positioning are supposed to be various. With fu-
ture work, more cases are able to be involved. As our design is based
on the application level, i.e. the animation file, more ubiquitous
sensing systems based on a virtual simulator of sensors can also
be designed. Combining with VR/AR to install sensors in virtual
environments from serious/somatosensory game may also help to
explore applications combined with the real world.
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Table 2: Result of different cases

Type Virtual Real world

Position Accuracy of
cross validation Position Accuracy of

real testing
A Chest 96.81% Chest 96.11%

Case a B Chest, right foot, left lower leg 99.81% Chest, right foot, left lower leg 97.79%
C Chest, right shoulder, head 97.38% Chest, right shoulder, head 89.95%

Case b Left lower leg-left,
Left upper leg-back 100% Left lower leg-left,

Left upper leg-back 91.25%

Case c from (-0.225, 1.40) to (0.225, 1.40)
with interval of 0.05 91.67% from (-22.5cm, 142cm) to (22.5cm, 142cm)

with interval of 5cm 90.69%
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