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ABSTRACT
For devices of human daily activity detection, accelerometer,
can sense acceleration signals with different characteristics
according to different parts of the human body. In this pa-
per, we present a framework to investigate the impact of the
number and placement of accelerometers on human daily ac-
tivity recognition. 17 different parts of body are equipped with
accelerometers, and examined. Multistage and multiswarm
discrete particle swarm optimization (MSMS-DSPO) algo-
rithm is developed to search the optimal sensor combinations
on basis of number of sensor’s demand. Additionally, user
preferences of wearable sensor wearing is investigated and the
motion recognition of involved place is analyzed as well. Thus,
different sensor layouts for specific activity category recog-
nition are provided, which is beneficial for user to arrange
the devices on their body according to number requirement,
activity type, preference or physical condition in an activity
recognition application.
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INTRODUCTION
As rapid development of non-visual based motion recognition
system, wearable sensors are normally adopted to gather the
motion information from the object. The sensors are equipped
on the obvious body parts for detecting the significant human
physiological or physical data. Due to the convenience of the
device, wearable equipment for human related motion or ges-
ture recognition has assisted human effectively at indoors and
outdoors scenarios [5], [4]. For human activity monitoring,
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the acceleration signal is capable of reflecting the information
regarding the activity of daily living (ADL) being conducted,
and accelerometer is generally adopted as the sensing device
to acquire the information of vast majority of human motion.

As a practical application, the consideration of applied object
conditions and preferences for sensor wearing is necessary.
For example, in rehabilitation case, the applied objects’ bodies
differ in degrees of injury received and thus more options for
sensor placement is necessary for those. Investigation of the
number of wearable sensors used and positions on the human
body is of importance for user to balance their own preferences
and actual situations of recognition accuracy. Furthermore, a
favorable sensor position can help reduce the requirement of
system algorithm as well and contributes to accuracy improve-
ment.

RELATED WORK
Different parts of the human body contain various acceleration
information and thus generating various recognition effect.
Many researchers have studied the influence of placements
of sensors on recognition result. Atallah et al. [1] introduced
the optimal sensor placement with regard to specific activities
through k-Nearest Neighbor (KNN) classifier. The work exam-
ined 14 kinds of human ADLs, 6 body placements as well as
different vital features for a classifier. Whereas only the impact
of single accelerometer is examined in related experiment and
the choices for more sensors are not provided in their work.
Gjoreski et al. [3] investigated the recognition of 8 activities
with 1 to 3 sensors used and 2 types of equipment (accelerom-
eter and accelerometer/gyroscope combination) are involved
in their work. Cleland et al. [2] utilized support vector ma-
chine (SVM) to establish the activity recognition system, and
evaluated the best sensor combinations of 6 different human
positions. Result revealed that basically 2-sensor combination
would satisfy the precision requirements in most cases. Even
though the related works had studied the number of sensors for
activity detection, there has been little comparison of different
placement and relatively less examined position of human
body.

SYSTEM DESIGN

Experiment configuration
In the experiment, there are 17 different positions on the hu-
man body for corresponding accelerometer placed. The iner-
tial device XSens MVN is adopted as the accelerometer. As
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Figure 1. Position process for not repeating (3-sensor as an instance)

shown in Figure 1, sensor placements include the head, chest,
left shoulder, right shoulder, waist, left upper arm, left fore-
arm, right upper arm, right forearm, left hand, right hand, left
upper leg, left lower leg, left foot, right upper leg, right lower
leg and right foot. 10 subjects are involved in corresponding
experiments to execute 10 different kinds of daily activities.
Conducted ADL can be divided into 3 types, i.e. the static ac-
tivity (standing and lying), dynamic activity (walking, running,
going upstairs and going downstairs.) and transitional activity
(sitting-to-standing, standing-to-sitting, squatting-to-standing
and standing-to-squatting.). Both static and dynamic activities
are performed by subjects for duration of 90 seconds at a time
and transitional activities in set of 15 repetitions. Relevant
motions are recorded by XSens system for annotation.

Related data processing
To recognize the activities that people are conducting, one of
the effective approaches, machine learning has attracted much
attention due to its intelligence. According to the work of
Rosati et al. [6], 4 different classifiers (SVM, KNN, Decision
tree and Feedforward neural network) were evaluated and the
SVM can present the best recognition accuracy among them.
Consequently, SVM is selected as the classifier in our system
to recognize the human ADL.

Sampled acceleration signal is firstly segmented by sliding
window method. The window length in our work is set to be
4s with an overlap of 2s for ensuring the continuity of motion.
Features selected are from 3 axes of each sensor and include
the mean value, variance, standard variance, 75th percentile,
inter-percentile, mean and median value of power spectrum
and Shannon entropy.

OPTIMAL SENSOR LAYOUT EVALUATION
Although 17 different positions on human body are involved
to place the wearable sensors, considering the practical ap-
plication, it is more valuable to investigate the corresponding
sensors on body with the number of 4 or fewer. Thus, the
multiswarm and multistage discrete particle swarm optimiza-
tion (MSMS-DPSO) algorithm based on swarm intelligent
searching method is developed in this paper. MSMS-DPSO
is designed according to the thought of particle swarm opti-
mization (PSO), which imitates the behavior of birds foraging.
Relevant equations are shown in formula (1), (2) and (3).
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Where x is the position of each particle. i and n represent the
dimension that the particle in and discrete time, respectively.
Besides, each particle has its own velocity, which is expressed
by v. Equation (1) is the velocity updating equation, consists
of three parts, namely, itself part, ‘individual’ part and ‘social’
part. During the iteration period, particle is judged via the fit-
ness value of goal function. Position x is updated by equation
(2). Pbest is the best fitness value from history of a particle.
Similarly, Gbest represents the best value among the history of
all particles. In order to introduce the characteristic of random-
ness, r1 and r2 are random operators and produced randomly
between (0,1). c1 and c2 , as the operators of ‘individual’ and
‘social’ part.

Thus, the principle of PSO can be concluded that during the
iteration the velocity and position of particle are constantly
updated through both the characteristics of randomness and
convergence considering. Following the updating process,
the particles are likely to converge to the best solution which
has optimal fitness value. In our case, fitness function is the
relationship between the sensor location and the recognition
accuracy of human activity. Optimal solution indicates the
sensor placement that the system can obtain the maximum ac-
curacy. Because the sensor location numbers (as indicated in
Figure 1) are in discrete space, the PSO is able to be discretiza-
tion so that equation (3) is introduced to allow the calculated
position to round to integer number.

To apply the algorithm, the position of each particle is de-
fined as the sensor location number and dimension is the re-
quirement of used sensor amount. Designed MSMS-DPSO
implement the optimization within two periods: intragroup
optimization and whole swarm optimization. For first opti-
mization period, different swarms carry out PSO optimization
in their own swarm. The global and local best position are
both defined within their own group and different swarm’s best
position does not affect each other. The fitness value is calcu-
lated once any of dimension’s position of a particle has been
changed. After the first stage, the participated particles in sec-
ond stage are the global best particle from each swarm. In this
period, calculation of fitness value is completed when a parti-
cle’s position in different dimensions have all been updated.



Figure 2. Position process for not repeating (3-sensor as an instance)

Sensor Optimal
number position Accuracy

Right shoulder 88.614%
1 Waist 87.733%

Left shoulder 87.686%
Waist+Chest 93.555%

2 Waist+Head 92.683%
Right shoulder+Waist 92.659%

Waist+Chest+Right upper arm 94.572%
3 Waist+Chest+Head 94.544%

Waist+Chest+Left shoulder 94.298%
Waist+Chest+Head+Right upper arm 95.126%

4 Waist+Chest+Head+Left upper arm 94.828%
Waist+Chest+Right upper arm+Left upper arm 94.714%

Table 1. Acceptable optimal sensor combinations for 1 to 4 sensors

It is noticeable that during the updating period, the avoidance
for non-repetition of each particle is necessary. The particle’s
positions in all dimensions should be different. Hence, we
defined the process according to the convergence velocity of
each dimension, to realize non-repetition of dimension. Fig-
ure 2. presents the relevant repetition avoiding process; in
which velocity is positive as an instance.

At the beginning, the algorithm initializes 9 particles and 3
as a swarm. It indicates that a total of 27 particles will be
involved in first intragroup optimization and 9 particles in
second optimization period. The first-dimension position is
specified as 2P-1 (P=1,2. . . 9) and remaining positions are
randomly produced and do not repeat with first dimension’s
position. Two border particles ([1,2,3. . . ,N], [17,16,15. . . ,17-
N+1], N is dimension) are defined as well.

For evaluation, at the first, the single sensor is utilized in
turn to obtain the highest average classification result as the
best position for single sensor via 10-fold cross validation.
And subsequently adopting the MSMS-DPSO algorithm to
seek other optimal sensor combinations. The convergence
condition for intragroup optimization stage is set as reaching
the maximum iteration times: N+1. In second period, when
all the particles’ positions converge into the same best position
the algorithm stops operating. To avoid the randomness of
cross validation, the algorithm is required to performing 3
times to calculate the average value as the result. Top three
combinations ranked are summarized in Table 1.

Figure 3. F1-score of optimal two-, three- and four-sensor combination
related to three types of activity

RESULT DISCUSSION

Optimal sensor layout and related recognition perfor-
mance
With MSMS-DPSO algorithm applied, the optimal sensor
combinations with different used number among 17 different
human parts is able to be figured out. Figure 3. gives the
F1-score of optimal 1, 2, 3 and 4 sensors’ combinations for
recognizing three types of ADL.

From the figure, with more sensors used the performance
of recognizing transitional activity is improved significantly.
Related F1-score of one sensor used for classifying, from
73.31% increases to 88.49% with 4 sensors used. The increase
of sensor number also leads to classify the dynamic activity
more effectively, i.e. from 92.04% (1-sensor) to 97.65% (4-
sensor). However, for static type, the accuracy improvement
is not such obvious. Only up to 2% increase is caused with
sensor number raising. But one sensor with optimal position
(right shoulder) has enabled the system to achieve the accuracy
of 96.98%.

In Table1, it is worth noticing that the sensor placement on
upper body is likely to allow the system to obtain an acceptable
result. We found that signals from lower body normally have
less ability to identify the activity of going up or downstairs, as
well as transitional activity. Normally 2 sensors are enough for
system to classify the ADL in most cases, which is consistent
with the work of [2]. Whereas, if a better result is required
especially for recognition of transitional activities, increasing
the number of sensors can be a favorable solution.

User preferences for position of wearable sensors
Figure 4. and Figure 5. show the result of investigation of the
user preferences of accessories wearing on body. 100 people
(50 female and 50 male) are involved in online questionnaire
and objects’ age are between 20 to 60.

Figure 4. shows that almost half (53%) of people would like
to wear the relevant device on their wrist. In addition, 14% of
people are willing to attach the device on the head or ear and
11% would like the accept electronic sensors in the form of
glasses or attached to glasses. Nevertheless, for belt, shoes,
shoulder and chest can not attract much attention from users.



Figure 4. The investigation result of user preferences for wearable device
placement

Figure 5. F1-score of optimal ‘right forearm’ based two-, three- and
four-sensor combinations

The wrist, as majority of people’s selection, is actually not a
suitable placement for an accelerometer. Figure 5. presents
several classification results related to the right forearm sensor
(wrist part). For optimal 2-sensor combination, the remaining
16 sensor positions except right forearm are tested and the
optimal combination can be obtained. Following this way, the
optimal 3- and 4-senor combinations can be obtained by means
of 2 or 3 sensor positions indicated at first and testing remain-
ing positions in turn. The figure shows that the ‘right forearm’
sensor has relatively moderate performance (over 78% accu-
racy) for static and dynamic activity. While, the situation for
transitional activity classification is worse(between 50% and
60%). If one more sensor is adopted, like using ’left shoul-
der’ sensor, the situation is going to be improved to 89.997%,
especially the performance of classifying transitional activity.
With 3 sensors, the optimal combination enables accuracy of
92.525%, increasing to 93.095% with the use of one more
sensor.

LIMITATION AND FUTURE WORK
Proposed MSMS-DPSO can effectively converge to the best
sensor combination and figure out the optimal sensor lay-
out. However, the involved activities are only limited to hu-
man daily field. In future, more complicated activity such as
context-aware activity can also be considered to investigate
corresponding sensor layout. Moreover, the optimization algo-

rithm needs to be focused on as well to improve convergence
speed for possible online application. So, much more types of
human activity recognition system can be benefited.

CONCLUSION
Presented work introduces an investigation of optimal sensor
layout on the human body to generate the best recognition
accuracy. 17 positions are examined, and 10 different human
ADL are classified via SVM. MSMS-DPSO designed in this
paper can be used to address the issue of selection of sensor
combination and provides other acceptable sensor layouts as
well. The result not only demonstrates the upper body espe-
cially the shoulder, head, chest and waist have an advantage
for sensor placing, but also discusses the user preferences of
sensor wearing with its recognition situation. Relevant layouts
can be beneficial in related application such as rehabilitation
case, to provide the choice for applied object.
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